Тел. ОАО «Охрана Прогресс»
Установка Видеонаблюдения, Охранной и Пожарной сигнализации.
Звоните! Приедем быстро! Установим качественно! + гарантия 5 лет.
 
Установка технических средств охраны.
Тел. . Звоните!

Главная  Электрические машины 

1 2  3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

где / /2 - частоты тока и напряжения статора и ротора; s - относительная частота вращения ротора или скольжение, определяемое частотой вращения поля статора щ и частотой вращения ротора машины 2-

=( 1 ±П2)/И1-

(1.2)

В синхронных машинах обмотка возбуждения ротора питается постоянным током (/2 = 0), и, следовательно, из (1.1) s = 0, откуда по (1.2) п = и т. е. ротор сш1хронной машины вращается синхронно с полем, созданным токами обмотки статора.

Жесткая связь частоты тока и частоты вращения определила область применения синхронных машин. Синхронные генераторы являются практически единственными мощными генераторами электрической энергии на электростанциях. Синхронные двигатели с учетом трудностей их пуска применяются как приводы промышленных установок, длительно работающих при постоянной частоте вращения и не требующих частых пусков, например как приводные двигатели воздуходувок, компрессоров и т. п.

В асинхронных машинах ток в обмотке ротора обусловлен ЭДС, наведенной в проводниках обмотки магнитным полем статора.

Наведение ЭДС происходит только при пересечении проводниками магнитных силовых линий поля, что возможно- пишь при неравенстве частот вращения ротора и поля статора ( 2 Ф щ). Частота тока в роторе равна /2 = /iS, что обеспечивает взаимную неподвижность поля токов ротора и поля статора, а частота вращения ротора при этом равна П2 = п{\-8). При скольжении S = 1 ротор неподвижен (/2 = /1), преобразования механической энергии не происходит и имеет место трансформаторный режим работы машины.

При питании обмотки ротора постоянным током машина переходит в синхронный режим работы. При питании ротора переменным током асинхронный двигатель может вращаться с частотой большей, чем частота поля статора. Такие режимы используются редко из-за сложности пуска машины; необходим разгонный двигатель либо преобразователь частоты. Примером двигателя этого типа являются двигатели Шра-ге -Рихтера, в которых для преобразования частоты тока ротора используется коллектор, соединенный с добавочной обмоткой ротора. Регулирование частоты вращения двигателя производится изменением добавочной ЭДС, вводимой в обмотку ротора.

путем изменения положения щеток на коллекторе [10].

В машинах постоянного тока поле возбуждения создается постоянным током, - а поле якоря - переменным. Преобразование постоянного тока сети в многофазный переменный ток якоря происходит с помощью механического преобразователя - коллектора. Частота переменного тока якоря определяется частотой его вращения, и магнитное поле, создаваемое током якоря, неподвижно относительно поля возбуждения машины.

Бесколлекторные (вентильные) машины постоянного тока, как правило, обращенные, т. е. их обмотки возбуждения, питаемые постоянным током, расположены на вращающемся роторе, а якорные обмотки - ка неподвижном статоре. Частота питания якорных обмоток задается статическим преобразователем частоты. Условие взаимной неподвижности полей статора и ротора приводит к возможности регулирования частоты вращения вала двигателя изменением частоты питания его якорных обмоток. С этой точки зрения вентильные машины постоянного тока могут рассматриваться как синхронные, обмотки переменного тока которых питаются от преобразователя частоты.

В однофазных коллекторных машинах обмотки возбуждения питаются переменным током и создают пульсирующее поле. Коллектор преобразует однофазный ток питания в многофазный переменный ток с частотой, зависящей от частоты вращения ротора, при которой магнитные поля статора и ротора неподвижны относительно друг друга. Из-за затрудненной коммутации коллекторные машины переменного тока выполняются лишь небольшой мощности [10].

1.2. Преобразование энергии в электрических машинах

Электромеханическое преобразование энергии сопровождается обязательным преобразованием электрической или механической энергии в тепловую. Преобразование энергии в тепло в электрических машинах принято называть потерями, так как тепловая энергия при эксплуатации электрических машин, как правшю, не используется в практических целях. В электрических машинах большой мощности в тепло преобразуются единицы или даже доли процентов энергии, подводимой к электрическим выводам или валу машины. В машинах малой мощности в тепло может преобразовываться большая часть энергии, подводимой к машине, по-




Рис. 1.6. Электрическая машина как шести-полюсник

этому КПД машин малой мощности небольшой.

Для общего представления о работе машины как преобразователя энергии ее можно представить в виде шестиполюсника (рис. 1.6), у которого есть два электрических вывода и, I, два механических вывода М, п и два тепловых Q, t. Электрические выводы связаны с электрической мощностью и характеризуются напряжением U и током /; механические связаны с механической мощностью и характеризуются моментом на валу машины М и частотой ее вращения п; тепловые выводы связаны с потерями энергии, возникающими в процессе преобразования, и характеризуются количеством выделенного тепла Q и температурой частей электрической машины t. Внутреннее сопротивление машины в самом общем случае можно охарактеризовать сопротивлением

Работа электрической машины может происходить в двух основных режимах: установившемся и динамическом, или переходном. В установившемся режиме все входные величины на выводах шестиполюсника, представляющего электрическую машину, и сопротивления самой машины неизменны во времени. В динамическом режиме обязательно изменяются одна, несколько или все входные величины и параметры машины В связи с этим анализ работы машины в динамических режимах значительно более сложен, чем в установившихся.

При работе электрической машины генератором механическая энергия подводится к валу, т. е. к механическим выводам М, п (рис. 1.6), а э.иектрическая энергия снимается с выводов и, I. При работе двигателем энергия подается на электрические выводы, а снимается с механических. Помимо двигательного или генераторного режима электрические машины могут работать также в тормозном и трансформаторном режимах.

Трансформаторный режим характерен для асинхронных машин с фазными

роторами. Он возникает при заторможенном (неподвижном) роторе и включении обмотки статора в сеть. Преобразования электрической энергии в механическую в этом режиме не происходит, так как частота вращения ротора равна нулю. Электрическая энергия, подводимая к статору, преобразуется в электрическую энергию, которая снимается с выводов роторной обмотки. В этом случае механические выводы рассматриваемого шестиполюсника должны быть заменены на электрические.

Специально рассчитанные асинхронные машины могут длительное время работать в трансформаторном режиме. При различных положениях фазного ротора такой машины оси фаз обмотки ротора изменяют свое положение относительно обмотки статора, что вызывает изменение амплитуды и фазы напряжения на обмотке ротора. Этот принцип регулирования используется в индукционных регуляторах и фазорегуляторах, получивших распространение в различных схемах регулирования, например в испытательных установках большой мощности.

В тормозном режиме направление врашения ротора обратно направлению вращения поля. При этом машина потребляет как э. гектрическую энергию со стороны электрических выводов, так и механическую энергию со стороны механических выводов шестиполюсника (рис. 1.6). Вся потребляемая энергия преобразуется в тепловую и расходуется внутри машины на нагрев ее частей, а также рассеивается в окружающую среду. Тормозные режимы - самые тяжелые с точки зрения нагрева частей электрической машины, поэтому большинство электрических машин рассчитано лишь на кратковременную работу в тормозных режимах.

Различают два вида электрического торможения: динамическое и рекуперативное. При динамическом торможении, применяемом, например, в двигателях постоянного тока, якорь машины отключается от сети и включается на резистор при оставшейся включенной обмотке возбуждения. Машина работает как генератор постоянного тока, потребляя механическую энергию вращающихся частей и генерируя электрическую энергию, которая расходуется на нагрев включенного резистора.

При рекуперативном торможении двигатель также переходит в генераторный режим и генерируемая энергия отдается в сеть. Рекуперативное торможение характерно для асинхронных двигателей, например для двигателей приводов лифтов, в ко-



торых путем переключения во время работы машины статорной обмотки на большее число полюсов уменьшается частота врашения поля. Ротор по инерции некоторое время продолжает врашаться с прежней частотой, большей, чем частота вращения поля после переключения числа полюсов обмотки. В это время машина работает в генераторном режиме и отдает электрическую энергию в сеть, потребляя кинетическую энергию движущихся частей приводного механизма. При замедлении частоты вращения ротора до частоты ниже синхронной машина опять переходит в двигательный режим и работает с частотой врашения, соответствующей новому числу полюсов обмотки статора.

Для синхронных машин важным является режим синхронного компенсатора, при котором активная электрическая мощность, получаемая из сети, расходуется только на потери внутри машины, а синхронная машина генерирует или потребляет из сети реактивную мощность. В компенсаторном режиме могут работать все синхронные машины, однако для практического использования производят специальный тип машин - синхронные компенсаторы, в которых генерирование или потребление реактивной мощности происходит с наименьшими потерями активной энергии.

По характеру нагрузки и частоте вращения ротора различают также режимы нагрузки, холостого хода и короткого замыкания машины. Термины и определения, относящиеся к режиму нагрузки, в том числе номинальной, даны в § 1.5.

При холостом ходе нагрузка на валу в двигательном режиме или электрическая мощность на выводах в генераторном режиме равна нулю. В режиме, близком к холостому ходу, работают многие электрические машины, в том числе и целый класс индикаторных машин, к которым относятся тахогенераторы, вращающиеся трансформаторы, сельсины и т. п. -

В режиме короткого замыкания генераторов сопротивление нагрузки равно нулю. В режиме короткого замыкания двигателей равна нулю частота вращения. Режим короткого замыкания характерен для начального момента пуска двигателя из неподвижного состояния. При включении обмотки статора на номинальное напряжение ток двигателя достигает больших значений, поэтому длительный режим короткого замыкания опасен для машин, не рассчитанных на работу при таких условиях. Короткое замыкание двигателей и генераторов, проводимое при пониженном напряжении, используется

при испытаниях электрических машин для опытного определения ряда их параметров.

1.3. Математические модели электрических машин

Математическая модель электрической машины - это система уравнений, описывающих процессы электромеханического преобразования энергии с допущениями, обеспечивающими необходимую точность решения для рассматриваемой задачи. Математические модели электрических машин широко используются для исследования электромеханических систем благодаря применению аналоговых и цифровых вычислительных машин. В настоящее время созданы модели, позволяющие исследовать практически любые задачи, встречающиеся в электромашиностроении [12, 13].

Несмотря на бесконечное конструктивное разнообразие индуктивных электрических машин все электрические машины с круговым полем в воздушном зазоре можно свести к обобщенной электрической машине (см. рис. 1.1). Обобщенная электрическая машина - это идеализированная двухполюсная машина с двумя парами обмоток на статоре и роторе. В ней энергия магнитного поля сосредоточена в воздушном зазоре и поле синусоидальное. В воздушном зазоре обобщенной машины вращающееся магнитное поле может создаваться обмотками статора и ротора. Напряжения статора или ротора создают сдвинутые во времени токи, а за счет пространственного сдвига обмоток в зазоре создается вращающееся поле.

Машины постоянного тока получаются из модели обобщенной электрической машины, если обмотки ротора или статора питать через преобразователь частоты.

В машинах постоянного тока преобразователем частоты является механический преобразователь частоты - коллектор. Постоянный ток преобразуется в многофазный переменный ток, который создает вращающееся поле, неподвижное относительно обмотки возбуждения, расположенной на статоре.

Как в машинах переменного, так и в машинах постоянного тока многофазная симметричная обмотка приводится к двухфазной, которая и рассматривается в обобщенной электрической машине (рис. 1.1). Процессы преобразования энергии в многополюсных машинах приводятся к процессам в двухполюсной машине.

Уравнения обобщенной электрической




1 2  3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152



Установим охранное оборудование.
Тел. . Звоните!