Тел. ОАО «Охрана Прогресс»
Установка Видеонаблюдения, Охранной и Пожарной сигнализации.
Звоните! Приедем быстро! Установим качественно! + гарантия 5 лет.
 
Установка технических средств охраны.
Тел. . Звоните!

Главная  Электрические машины 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61  62  63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

цевых фланцах имеются закрывающиеся лазы, а вверху корпуса, в зоне расположения подшипников,-монтажные люки.

Конструкция компенсатора мощностью 160 MB А, 750 об/мин (рис. 8.10) аналогична конструкции компенсаторов меньшей мощности. Для уменьшения габаритов газоохладители расположены горизонтально под корпусом в герметически закрытых кожухах по одному с каждой стороны компенсатора.

Обмотка статора - двухслойная с термореактивной изоляцией стержней. На нулевых выводах установлены встроенные трансформаторы тока.

Охлаждение осуществляется по следующей схеме. Водород из охладителей направляется вентиляторами аксиально в междуполюсные окна и в зазор между статором и ротором. Газ охлаждает внешние поверхности катушек полюсов и частично зубцо-вую зону сердечника и полюсные башмаки. Затем водород поступает в радиальные каналы между пакетами сердечника статора, которые имеют развитую поверхность охлаждения. Скорость водорода в каналах в зуб-цовой зоне 25 - 30 м/с, что обеспечивает охлаждение сердечника и стержней обмотки статора.

Нагретый газ после выхода из сердечника через окна в рамах корпуса проходит в кольцевые камеры над лобовыми частями обмотки и оттуда - в газоохладители. Охлажденный в газоохладителях водород вновь поступает в торцевые зоны корпуса перед вентиляторами.

8.5.4. Беацеточная система возбуждения компенсаторов

В синхронных компенсаторах мощностью 50-160 MB-А возбуждение бесщеточное, с применением реверсивной системы, с двумя обмотками на роторе. Основная обмотка служит для положительного возбуждения, а дополнительная обмотка создает встречный поток. Магнитодвижущая сила дополнительной обмотки состанляет около 15% МДС основной обмотки. К основной обмотке ротора подключен диодный бесщеточный возбудитель положительного возбуждения, к дополнительной обмотке - возбудитель отрицательного возбуждения меньшей мощности. Возбудители выполнены герметически закрытыми. Они установлены с обеих сторон компенсатора. Якоря обращенных генераторов и блоки выпрямителей расположены на валу кймпенсатора

К ярму магнитной системы, которое является частью корпуса возбудителя, при-

креплены болтами полюсы с обмоткой возбуждения. Полюсы, шихтованные из листовой стали толщиной 1,5 мм, имеют медную демпферную обмотку. Катушки возбуждения вьшолняются многослойными из изолированного провода марки ПСД.

Сердечник якоря шихтован из пакетов шириной 40 мм и спрессован фланцами. Обмотка якоря выполнена трехфазной, катушечной с изоляцией класса В. В возбудителе компенсатора 50 MB А число параллельньи ветвей 8, в компенсаторах мощностью 100- 160 MB - А - 12. Катушки укреплены в пазах клиньями, а Б лобовых частях - стекло-бандажной лентой. Выводы параллельных ветвей каждой фазы присоединены к токо-собирательным кольцам, соединенным шинками с вращающимся выпрямителем. Нулевые выводы параллельных ветвей присоединены к одному кольцу. Остов якоря насажен на конеп вала компенсатора.

Вращающийся выпрямитель выполняется в виде двух вентильных цепей Платы, на которых крепятся вентили, имеют сварную конструкцию и омедненные контактные поверхности Б местах крепления диодов.

Охлаждение возбудителя осуществляется водородом по замкнутому циклу через встроенные газоохладители. Необходимый напор создается распорками в радиальных каналах якоря.

Бесщеточные возбудители для отрицательного возбуждения выполняются аналогично. Якорь возбудителя прикреплен к торцу вала компенсатора, а вращающийся выпрямитель - к якорю.

Пуск и останов компенсатора обеспечивает схема автоматического управления. На панелях предусмотрена световая и звуковая сигнализация включения двигателей масло-насосов и водяного охлаждения охладителей. Имеется также возможность контроля температуры статора, водорода, масла и охлаждающей воды.

Компенсатор снабжен следующими видами защит: продольной дифференциальной токовой, минимальной напряжения, максимальной токовой, от потери возбуждения, частотной при снижении частоты.

Автоматический регулятор возбуждения обеспечивает также следующие режимы работы компенсатора: рабочий с положительным, нулевым и отрицательным возбуждением, форсировки возбуждения с ограничителем тока ротора до двукратного и снижением его до номинального после 50 с форсировки, быстрого развозбуждения путем перевода тиристорного преобразователя в инверторный режим.



§ 8.6

Синхронные двигатели

8.5.5. Система водородного охлаждения компенсаторов

Аппаратура системы водородного охлаждения обеспечивает поддержание при эксплуатации компенсатора рабочего давления водорода, контроль чистоты водорода, пополнение утечек.

Для заполнения и удаления газа компенсатор имеет два коллектора: углекислотный в нижней части под корпусом статора и водородный в верхней части внутри корпуса

Водород из коллектора газового поста поступает в корпус компенсатора через редуктор давления, который служит также для автоматического поддержания давления водорода в корпусе. Заполнение компенсатора водородом и его поддувку выполняют вручную. Чистоту водорода в корпусе контролируют газоанализатором, показания анатиза-тора дополняются сигналом о понижении содержания водорода

Для контроля отсутствия жидкости в корпусе применяется индуктивное реле уровня жидкости, которое подключается к углекислотному коллектору. При попадании воды из газоохладителей или масла из системы смазки подшипников реле подает сигнал; кроме того, возможна визуатьная проверка наличия жидкости через маслоука-зательное стекло.

Температура водорода внутри корпуса контролируется с помощью термометрических сигнализаторов, устанавливаемых на выходе холодного газа из газоохладителя.

8.5.6. Пуск компенсаторов

Пуск компенсаторов - асинхронный при напряжении на обмотке статора, равном 0,4 номинального. При этом пусковой момент составляет 0,15 - 0,2 номинального (см. табл. 8.15) и длительность пуска - 20 -35 с.

Компенсаторы мощностью 50, 100 и 160 MB-А допускают повторный пуск в процессе выбега, а также в том случае, когда отключение произошло после короткого замыкания в сети и имело место кратковременное форсирование возбуждения (длительностью до 10 с). Перед пуском компенсатора подготавливают схемы водяной, масляной и газовой систем, проверяют сопротивления изоляции обмоток статора, ротора и подшипников.

8.5.7. Режимы работы компенсаторов

Компенсаторы могут работать с номинальной мощностью при изменении напря-

жения сети на + 5 %. При понижении напряжения на 10% ток статора может быть увеличен на 5 %, т. е. мощность снижается на 5 %. Компенсаторы допускают следующие кратности перегрузок и их длительность:

Кратность Допустимая

перегрузки длительность,

2 ............. 1

1,5 ............. 2

1,4 ............. 3

1,3 ............. 4

1,2 ............. 6

1,15.............15

1,1 .............60

При глубоких понижениях напряжения в сети (более 15%) включается форсированное возбуждение, которое автоматически снимается после восстановления напряжения или в случае, если длительность аварии в сети выше 30 - 50 с. Ток форсировки - двукратный. Дополнительное превышение температуры обмоток при этом - примерно 15 °С.

При изменении режимов охлаждения мощность компенсатора снижается, причем ограничение мощности определяется нагревом обмотки ротора При повышении температуры охлажденного водорода выше 50 С компенсатор отключается от сети.

При уменьшении температуры воды не более чем на 10 °С мощность может быть увеличена на 1,2% при воздушном охлаждении и на 0,8% при водородном на каждый градус снижения температуры охлаждающей воды. При уменьшении температуры воды более чем на 10 °С дальнейшее увеличение мощности не рекомендуется.

8.6. Синхронные двигатели

8.6.1. Классификация синхронных двигателей

Технически и экономически обоснованный нижний предел номинальных мощностей синхронных двигателей составляет 500 - 600 кВт. Синхронные двигатели с частотой врашения 1000 об/мин и ниже выпускаются с явнополюсными шихтованными роторами с демпферной обмоткой. Синхронные двигатели мощностью свыше 12500 кВт с частотой вращения 1500 об/мин выполняют, как правило, с массивными полюсами без специальной демпферной (пусковой) обмотки.

Синхронные двигатели с частотой вращения 3000 об/мин - турбодвигатели - име-



ют неявно выраженное исполнение полюсов ротора. Роторы этих двигателей выполняют из массивной поковки так же, как роторы турбогенераторов.

Синхронные двигатели выпускают в основном на напряжение 6000 и 10000 В. Номенклатура низковольтных двигателей на напряжение 380 В, имеющих мощность до 320 кВт, последовательно сокращается, и они заменяются на более экономичные асинхронные двигатели. Широко распространенные синхронные микродвигатели рассматриваются в т. 2 Справочника.

Большинство типов синхронных двигателей выпускают как машины общего назначения. Многие серии и типы синхронных двигателей предназначены для привода конкретных типов механизмов: компрессоров, различного рода мельниц, вентиляторов, ре-зиносмесителей и грануляторов, экскаваторных агрегатов и др.

По форме исполнения в отдельную группу выделяют вертикальные двигатели, которые применяют для привода насосов. Горизонтальные двигатели могут иметь исполнение с двумя и одним подшипником и консольное исполнение.

Важными классификационными характеристиками синхронных двигателей являются степень защиты и система вентиляции и охлаждения. По этому признаку синхронные двигатели подразделяют на: открытые или брызгозащищенные, закрытые с разомкнутым циклом вентиляции, закрытые с замкнутым циклом вентиляции и встроенными водяными охладителями, закрытые с замкнутым циклом вентиляции с встроенными воздушными охладителями, закрытые взры-возащищенные продуваемые под избыточным давлением.

Большинство двигателей имеют самовентиляцию, однако в машинах больших габаритов для охлаждения применяют и вентиляторы-наездники.

В настоящее время для возбуждения синхронных двигателей применяют только полупроводниковые статические или бесщеточные системы возбуждения.

Статические возбудители, как правило, питаются от постороннего источника. Выпускаются двигатели, которые имеют для питания возбуждения специальную дополнительную обмотку в пазах статора.

Бесщеточные возбудители обычно встраивают в конструкцию двигателя. В сериях СТД и СТДП применяют бесщеточное возбудительное устройство, которое является самостоятельным изделием и пристраивается к двигателю.

В синхронных двигателях малых габаритов широко используют подшипники качения, в крупных - подшипники скольжения.

Диапазон габаритов синхронных двигателей весьма широк: внешние диаметры сердечников статоров нарастают от 740 до 4500 мм. В настоящее время проектируют сверхмощные двигатели. Наиболее распространенные серии явнополюсных синхронных двигателей имеют следующую структуру обозначения:

X-X-X-X

в которой: 1 - условное название серии и номер модификации; 2 - условное обозначение габарита; 3 - длина сердечника статора, см; 4 - число полюсов.

8.6.2. Синхронные явнополюсные двигатели общего назначения серий СДН и СДНЗ

Синхронные двигатели серий СДН и СДНЗ предназначены для привода насосов, мельниц, вентиляторов, дымососов и других механизмов с небольшими маховыми массами, которые не требуют регулирования частоты вращения.

Как правило, двигатели работают в закрытых помещениях с искусственно регулируемыми климатическими условиями. Температура окружающего воздуха по ТУ определяется от - 20 до -I- 40 °С (исполнение У). При этом среднемесячное значение влажности окружающей среды в наиболее теплый и влажный период должно быть не более 80% при температуре --20°С.

Степень защиты у двигателей СДН - IPOO, двигателей СДНЗ -IP44. Двигатели работают в невзрывоопасной среде, не содержащей агрессивных газов и паров в концентрациях, которые могут разрушить металлы и изоляцию.

Двигатели этих серий выполняют со станиной на лапах, с двумя стояковыми подшипниками скольжения, с горизонтальньш расположением вала с одним свободным цилиндрическим концом.

Корпус статора - сварной из листовой стали. Между пакетами сердечника статора имеются радиальные каналы для прохода охлаждающего воздуха. Сердечник запрессовывается в корпус и удерживается стяжными шпильками.

Обмотка статора - двухслойная, петлевая из обмоточного провода марки ПЭТВСД без дополнительной витковой изоляции. Корпусная изоляция - термореактив-




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61  62  63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152



Установим охранное оборудование.
Тел. . Звоните!